18,497 research outputs found

    Functional Assessment of Heart Failure Patients

    Full text link
    Heart failure (HF) is the condition characterized by the inability of the heart to pump sufficient blood to meet the demands of the body. It has been well established that both the prevalence and incidence of HF is increasing.1 There are 2 primary types of HF, categorized by ejection fraction: Reduced ejection fraction and preserved ejection fraction.2 Additionally, HF is commonly classified into stages from mild to severe using a symptom-based scale related to functional limitations. One of the hallmark features of HF is exercise intolerance, which is accompanied by symptoms of fatigue and shortness of breath.3 As the disease progresses, patients experience a downward spiral as these symptoms typically result in reduced physical activity, which leads to progressively worsening exercise intolerance. Typically, patients with HF are faced with what can be termed a functional disability. Often, their reduced functional abilities restrict or may even prevent them from performing occupational tasks, which may result in loss of work. Additionally, it is well known that patients with HF experience impairment in the ability to carry out activities of daily living and suffer from reduced quality of life. The objective of this paper was to provide an overview of assessments of functional ability of patients with HF. Two categories of assessment are reviewed: Cardiovascular function and muscular function. The review includes procedural guidance on how to administer the assessments and information related to the advantages and disadvantages of each method. Because both HF types (reduced ejection fraction and preserved ejection fraction) are characterized by exercise intolerance, the procedures can be used effectively with either type of HF

    Dynamic Trust Federation in Grids

    No full text
    Grids are becoming economically viable and productive tools. Grids provide a way of utilizing a vast array of linked resources such as computing systems, databases and services online within Virtual Organizations (VO). However, today’s Grid architectures are not capable of supporting dynamic, agile federation across multiple administrative domains and the main barrier, which hinders dynamic federation over short time scales is security. Federating security and trust is one of the most significant architectural issues in Grids. Existing relevant standards and specifications can be used to federate security services, but do not directly address the dynamic extension of business trust relationships into the digital domain. In this paper we describe an experiment in which we highlight those challenging architectural issues and we will further describe how the approach that combines dynamic trust federation and dynamic authorization mechanism can address dynamic security trust federation in Grids. The experiment made with the prototype described in this paper is used in the NextGRID project for the definition of requirements for next generation Grid architectures adapted to business application need

    Cosmological Acceleration Through Transition to Constant Scalar Curvature

    Get PDF
    As shown by Parker and Raval, quantum field theory in curved spacetime gives a possible mechanism for explaining the observed recent acceleration of the universe. This mechanism, which differs in its dynamics from quintessence models, causes the universe to make a transition to an accelerating expansion in which the scalar curvature, R, of spacetime remains constant. This transition occurs despite the fact that we set the renormalized cosmological constant to zero. We show that this model agrees very well with the current observed type-Ia supernova (SNe-Ia) data. There are no free parameters in this fit, as the relevant observables are determined independently by means of the current cosmic microwave background radiation (CMBR) data. We also give the predicted curves for number count tests and for the ratio, w(z), of the dark energy pressure to its density, as well as for dw(z)/dz versus w(z). These curves differ significantly from those obtained from a cosmological constant, and will be tested by planned future observations.Comment: 31 pages, 7 figures; to appear in ApJ. Corrected numerical results; described quantum basis of theory; 18 references added; 2 figures adde

    A "partitioned leaping" approach for multiscale modeling of chemical reaction dynamics

    Full text link
    We present a novel multiscale simulation approach for modeling stochasticity in chemical reaction networks. The approach seamlessly integrates exact-stochastic and "leaping" methodologies into a single "partitioned leaping" algorithmic framework. The technique correctly accounts for stochastic noise at significantly reduced computational cost, requires the definition of only three model-independent parameters and is particularly well-suited for simulating systems containing widely disparate species populations. We present the theoretical foundations of partitioned leaping, discuss various options for its practical implementation and demonstrate the utility of the method via illustrative examples.Comment: v4: 12 pages, 5 figures, final accepted version. Error found and fixed in Appendi

    Gravitational waves from binary systems in circular orbits: Convergence of a dressed multipole truncation

    Get PDF
    The gravitational radiation originating from a compact binary system in circular orbit is usually expressed as an infinite sum over radiative multipole moments. In a slow-motion approximation, each multipole moment is then expressed as a post-Newtonian expansion in powers of v/c, the ratio of the orbital velocity to the speed of light. The bare multipole truncation of the radiation consists in keeping only the leading-order term in the post-Newtonian expansion of each moment, but summing over all the multipole moments. In the case of binary systems with small mass ratios, the bare multipole series was shown in a previous paper to converge for all values v/c < 2/e, where e is the base of natural logarithms. In this paper, we extend the analysis to a dressed multipole truncation of the radiation, in which the leading-order moments are corrected with terms of relative order (v/c)^2 and (v/c)^3. We find that the dressed multipole series converges also for all values v/c < 2/e, and that it coincides (within 1%) with the numerically ``exact'' results for v/c < 0.2.Comment: 9 pages, ReVTeX, 1 postscript figur

    Variability of Objectively Measured Sedentary Behavior

    Full text link
    The primary purpose of this study was to evaluate variability of sedentary behavior (SB) throughout a 7-d measurement period and to determine if G7 d of SB measurement would be comparable with the typical 7-d measurement period. Methods: Retrospective data from Ball State University_s Clinical Exercise Physiology Laboratory on 293 participants (99 men, 55 T 14 yr, body mass index = 29 T 5 kgImj2; 194 women, 51 T 12 yr, body mass index = 27 T 7 kgImj2) with seven consecutive days of data collected with ActiGraph accelerometers were analyzed (ActiGraph, Fort Walton Beach, FL). Time spent in SB (either G100 counts per minute or G150 counts per minute) and breaks in SB were compared between days and by sex using a two-way repeated-measures ANOVA. Stepwise regression was performed to determine if G7 d of SB measurement were comparable with the 7-d method, using an adjusted R2 of Q0.9 as a criterion for equivalence. Results: There were no differences in daily time spent in SB between the 7 d for all participants. However, there was a significant interaction between sex and days, with women spending less time in SB on both Saturdays and Sundays than men when using the 100 counts per minute cut-point. Stepwise regression showed using any 4 d would be comparable with a 7-d measurement (R2 9 0.90). Conclusions: When assessed over a 7-d measurement period, SB appears to be very stable from day to day, although there may be some small differences in time spent in SB and breaks in SB between men and women, particularly on weekend days. The stepwise regression analysis suggests that a measurement period as short as 4 d could provide comparable data (91% of variance) with a 1-wk assessment. Shorter assessment periods would reduce both researcher and subject burden in data collection

    Peak Ventilation Reference Standards from Exercise Testing: From the FRIEND Registry

    Full text link
    Peak Ventilation Reference Standards from Exercise Testing: From the FRIEND Registry. Med. Sci. Sports Exerc., Vol. 50, No. 12, pp. 2603–2608, 2018. Purpose: Cardiopulmonary exercise testing (CPX) provides valuable clinical information, including peak ventilation (V˙ Epeak), which has been shown to have diagnostic and prognostic value in the assessment of patients with underlying pulmonary disease. This report provides reference standards for V˙ Epeak derived from CPX on treadmills in apparently healthy individuals. Methods: Nine laboratories in the United States experienced in CPX administration with established quality control procedures contributed to the Fitness Registry and the Importance of Exercise National Database from 2014 to 2017. Data from 5232 maximal exercise tests from men and women without cardiovascular or pulmonary disease were used to create percentiles ofV˙ Epeak for both men and women by decade between 20 and 79 yr. Additionally, prediction equations were developed for V˙ Epeak using descriptive information. Results: V˙ Epeak was found to be significantly different between men and women and across age groups (P G 0.05). The rate of decline in V˙ Epeak was 8.0% per decade for both men and women. A stepwise regression model of 70% of the sample revealed that sex, age, and height were significant predictors ofV˙ Epeak. The equation was cross-validated with data from the remaining 30% of the sample with a final equation developed from the full sample (r = 0.73). Additionally, a linear regression model revealed forced expiratory volume in 1 s significantly predicted V˙ Epeak (r = 0.73). Conclusions: Reference standards were developed for V˙ Epeak for the United States population. Cardiopulmonary exercise testing laboratories will be able to provide interpretation of V˙ Epeak from these age and sex-specific percentile reference values or alternatively can use these nonexercise prediction equations incorporating sex, age, and height or with a single predictor of forced expiratory volume in 1 s

    Do OB Runaway Stars Have Pulsar Companions?

    Full text link
    We have conducted a VLA search for radio pulsars at the positions of 44 nearby OB runaway stars. The observations involved both searching images for point sources of continuum emission and a time series analysis. Our mean flux sensitivity to pulsars slower than 50 ms was 0.2 mJy. No new pulsars were found in the survey. The size of the survey, combined with the high sensitivity of the observations, sets a significant constraint on the probability, fpf_p, of a runaway OB star having an observable pulsar companion. We find fp≤6.5f_p \le 6.5\% with 95\% confidence, if the general pulsar luminosity function is applicable to OB star pulsar companions. If a pulsar beaming fraction of \onethird\ is assumed, then we estimate that fewer than 20\% of runaway OB stars have neutron star companions, unless pulsed radio emission is frequently obscured by the OB stellar wind. Our result is consistent with the dynamical (or cluster) ejection model for the formation of OB runaways. The supernova ejection model is not ruled out, but is constrained by these observations to allow only a small binary survival fraction, which may be accommodated if neutron stars acquire significant natal kicks. According to Leonard, Hills and Dewey (1994), a 20\% survival fraction corresponds to a 3-d kick velocity of 420 km s−1^{-1}. This value is in close agreement with recent revisions of the pulsar velocity distribution.Comment: Submitted to the Astronomical Journal. 16 pages. Latex uses aaspp4.sty. 3 postscript figures. Address correspondence to Colin Philp ([email protected]). Revision was to replace .ps file with latex fil

    Magnetic structure of the field-induced multiferroic GdFe3(BO3)4

    Full text link
    We report a magnetic x-ray scattering study of the field-induced multiferroic GdFe3(BO3)4. Resonant x-ray magnetic scattering at the Gd LII,III edges indicates that the Gd moments order at TN ~ 37 K. The magnetic structure is incommensurate below TN, with the incommensurability decreasing monotonically with decreasing temperature until a transition to a commensurate magnetic phase is observed at T ~ 10 K. Both the Gd and Fe moments undergo a spin reorientation transition at TSR ~ 9 K such that the moments are oriented along the crystallographic c axis at low temperatures. With magnetic field applied along the a axis, our measurements suggest that the field-induced polarization phase has a commensurate magnetic structure with Gd moments rotated ~45 degrees toward the basal plane, which is similar to the magnetic structure of the Gd subsystem observed in zero field between 9 and 10 K, and the Fe subsystem has a ferromagnetic component in the basal plane.Comment: 27 pages, 7 figures, to appear in Phys. Rev.
    • …
    corecore